Presentation to the International Federation of Municipal Engineers

18 April 2016

Monique Allain – Advisor, Strategy and Market Development Waleed Shawkat – Principal, Project Development Danny Wisniowski-Wong – Associate, Project Development Michael Manocha – Associate, Investments

Agenda

- Introduction to PPP Canada
- P3 Fundamentals
- Value for Money
- Payment Mechanism
- Capital at Risk
- Overview of Efficiencies Study
- Overview of Efficiencies Matrix

PPP Canada – Leading the Government's P3 Agenda

Acts as a Source of Expertise

Advances Federal P3 Projects

Supports Other Levels of Government

A Source of Expertise: Our Experience at Work

Since 2009, PPP Canada has helped double the number of P3s in the Canadian market by:

- Investing over \$1.3 billion in projects across the country leveraging more than \$6.5 billion in public infrastructure
- Reviewing 300+ project proposals for P3 suitability
- Evaluating 50+ P3 business cases
- Conducting due diligence on 20+ projects in various phases of procurement

P3 Fundamentals

Definition

P3s are a long-term **performance-based** approach for **procuring** projects where the private sector assumes a major share of the responsibility in terms of **risk and financing** for the delivery and the performance of the asset, from design to long-term maintenance.

P3 Characteristics - Integration

- A P3 contract, or Project Agreement, typically includes a number of phases:
 - Design;
 - Build;
 - Finance;
 - Operate; and
 - Maintain.
- In our P3 contracts, the public sector retains the ownership of the asset
 - A P3 contract is not a joint venture with the private sector, a co-ownership, a
 divesture of an asset or a lease contract.

P3 Benefits and Costs

P3 Characteristics - Performance

Output based specifications

- The public sector includes performance specifications that define <u>what</u> is required rather than <u>how</u> it is done
 - Encourages innovation in the private sector
 - Includes powerful financial incentives and a strong monitoring regime to promote compliance through each phase of the project
- The public sector transfers risks that the private sector is best able to manage, such as:
 - Risk of cost overruns, design deficiencies, construction delay, etc.

P3 Characteristics - Financing

- Most P3s are financed by debt and equity, and rely on performance-based payments to be repaid. As a result:
 - The financiers exercise a great deal of due diligence and oversight on the project
 - The financing anchors the risk transfer to Project Co, and provides strong incentives for compliance with terms of the Project Agreement

Traditional Procurement vs. P3 Procurement

Assets

Assets and services

Input terms

Output terms

Components of delivery are separated

Components of delivery are bundled

Paid during or in full upon construction completion

Partially paid over the life of asset - linked to operational performance.

Risks are mainly retained

Risks are mainly transferred

Infrastructure Delivery Model Spectrum

The most robust forms of P3 are those where the private sector bears financial risk throughout the project lifecycle: DBFM and DBFOM models

Will my project make a good P3?

Project Size

• Is the capital cost more than \$50M?

Project Characteristics

- Is the project new construction, refurbishment of an existing asset or both?
- What is the extent of integration into existing assets or services?

Asset and Service Need Duration

 Is the expected useful life of the assets(s) equal or more than 20 years?

Bundling of Contracts

 Is there potential to bundle a number of contracts for the same asset(s) into a single long-term contract?

Will my project make a good P3?

Innovation

 Could the private sector have flexibility in the design and construction of the asset(s) in order to meet output specs?

Lifecycle

- Are there significant O&M and refurbishments for the asset(s)?
- Are there any factors that would limit the possibility of the private sector operating and/or maintaining the asset(s)?

Market Capacity/Interest

- Is there sufficient market capacity/interest to deliver the project as a P3?
- 4-8 bid teams at RFQ stage

Design and Service Output Specifications

- Will design or service requirements change over time?
- Are there any factors that could limit the public sector's ability to assess service quality?

Will my project make a good P3?

Market Precedents

 Have projects with similar requirements and of similar size and scale been delivered through the P3 model?

Legislative and Regulatory Hurdles

 Are there any legislative /regulatory constraints on the inclusion of the private sector?

Key Advisors

FINANCIAL ADVISOR

P3 Business Case Services

Undertake procurement options analysis
Prepare case studies on precedent projects
Develop the project description
Conduct market sounding
Undertake qualitative assessments
Develop procurement strategies and implementation plans

Plan and conduct risk workshops Undertake Quantitative Risk Assessments Conduct Value-for-Money Analysis Advise on desired results and performance requirements

Financial / Transaction Advice

Develop the financing structure Conduct Value-for-Money Refreshes Prepare corporate finance / capital markets advice

Provide advice on Securities and Taxation Provide advice on construction financing Propose methodologies for financial submission evaluation Evaluate financial submissions

Support activities during financial and commercial close

TECHNICAL ADVISOR

Engineering Reviews & Risk Analysis

Participate in risk workshops Conduct due diligence on risk matrices

Review feasibility and pre-feasibility studies

Peer review approach of technical work

Technical Advice

Prepare and review schematic designs
Prepare and review technical programs
Undertake and review geotechnical analysis
Analyze technical specifications

Contribute to procurement documentation

Develop performance specifications

Develop and review environmental criteria

Identify quality management requirements

Lead technical evaluation of submissions

Perform technical compliance reviews
Assist with the resolution of technical issues
Confirm the technical feasibility of proposals
Evaluate technical submissions

Assist sponsors with project management

Participate in project sponsor committees Audit construction progress Review progress reports

COST ADVISOR

Prepare and review schematic cost estimates
Prepare, review and benchmark elemental

cost breakdowns

Quantity surveying

Cost certification

Project budget review for capital and operating cost estimates including lifecycle expenditures

Value engineering

Peer review costing methodologies and other reports related to cost consulting work

LEGAL ADVISOR

Draft/review documentation

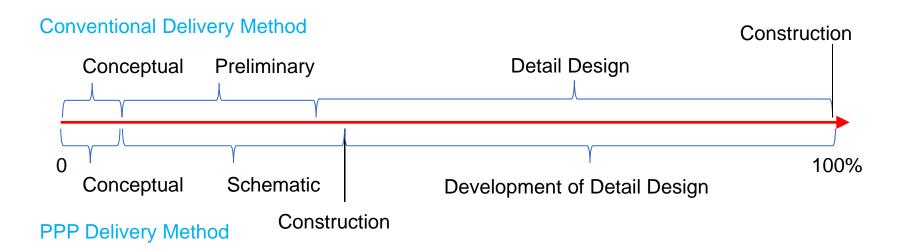
Terms and conditions

Submission requirements

Payment mechanisms

Risk allocation

Evaluation criteria and manuals


Provide support during negotiations Advise on submissions' compliance

Dispute resolution

Participate in meetings and provide legal advice and guidance.

Levels of Design

- Conceptual design, Class D
- Schematic design, Class C
- Design development, Class B
- Design documents, Class A

Minimum Work Required for Highways Project

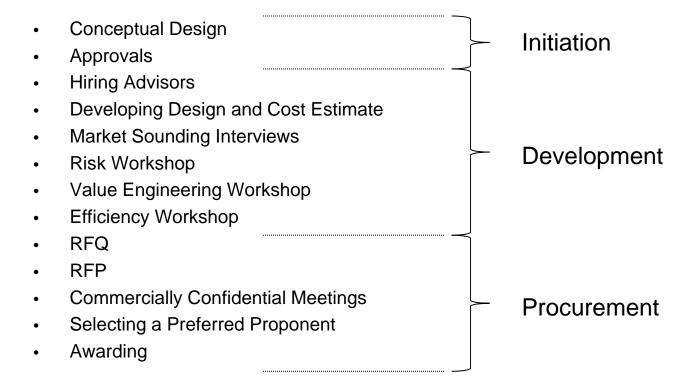
ITEM	SOURCE	DOCUMENT
Schematic horizontal and vertical layout of the Highway and associated structures, including basic statistics, e.g. dimensions, number of lanes, parking, exits, overhead signs, etc. (30% complete)	Highways Designer	Drawing / Outline Brief
As-built drawings for existing Highway and structures (if applicable)	Sponsor	Drawing
Demolition drawings (if rehabilitation), including clear indication of existing materials to remain	Structural Designer	Drawing
Geotechnical and foundation system; load requirements; and, specific foundation requirements to address geotechnical issues	Geotechnical / Foundation Designer	Drawing
Highway cross sections and structures' sections	Highways Designer	Drawing
Outline specification (10% or higher), with selected materials, sizing and performance requirements	All Consultants	Report
Preliminary / existing drainage study	Hydrologist	Report
Existing utility location	Consultant	Drawing
Electrical requirements	Electrical Designer	Outline Brief
Environmental study	Consultant	Report

Elemental Cost Analysis

Background

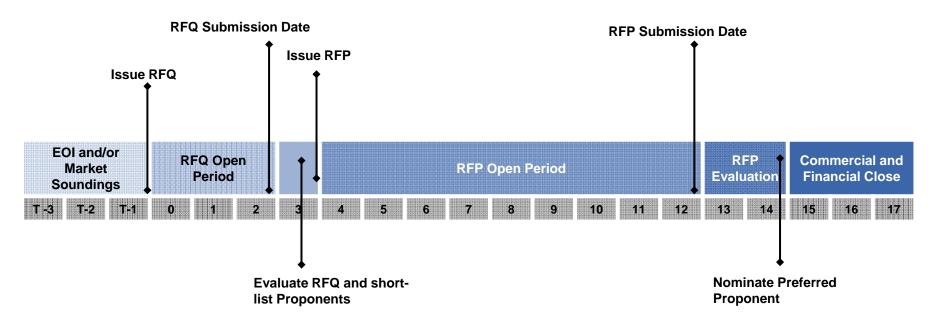
Recognized by CIQS

Purpose

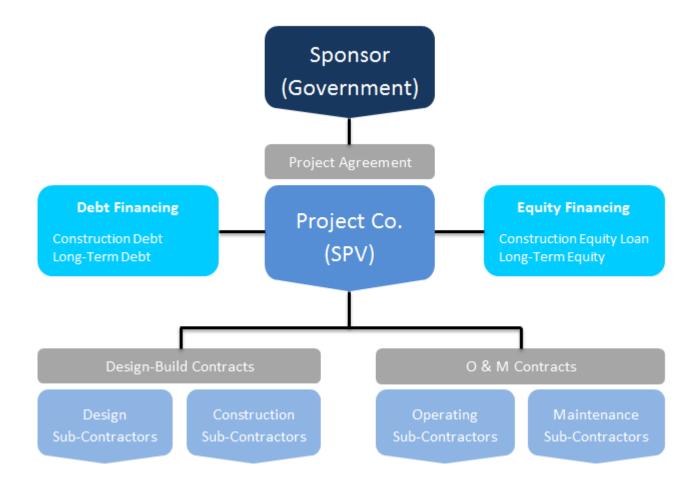

 Monitor and control costs during design

Elements selection

Contingency


Project								7 May 201 F - 1	15
Location ELEMENTAL COST SUMMARY				RY E	Bldg Type : 121				
Owner							C.T. Index :	0.0	
Consultant : TBT						(GFA :	161,356 r	m2
	Ratio		Elemen	tal Cost	Elementa	al Amount	ount Rate per		
Element	to GFA	Quant	ity	Unit rate	Sub-Total	Total	Sub-Total	Total	%
A SUBSTRUCTURE		161,356	m2			5,481,125		33.97	1.1
A10 PIERS						0		0.00	0.0
101 Foundations 102 Walls 103 Columns 104 Cap Beams					0 0 0		0.00 0.00 0.00 0.00		
A20 TOWERS						5,481,125		33.97	1.1
201 Foundations 202 Walls 203 Columns 204 Cap Beams	0.000	1	Sum Sum	513,750.00 4,967,375.00	0 0 513,750 4,967,375		0.00 0.00 3.18 30.79		
A30 ABUTMENTS						0		0.00	0.0
301 Foundations 302 Stems 303 Wing Walls					0 0 0		0.00 0.00 0.00		
A40 OTHER SUPPORTS						0		0.00	0.0
401 Thrust Blocks 402 Anchorages					0		0.00		
B SUPERSTRUCTURE		161,356	m2			376,603,090		2,333.99	72.5
B10 SHORT SPAN ASSEMBLIES 101 Flexural Members 102 Diaphragms 103 Bracing	0.000	1	Sum	0.00	0 0 0	0	0.00 0.00 0.00	0.00	0.0

Typical P3 Process Milestones

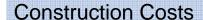

Procurement Timeline

Procurement Stage	Typical Length of Time
RFQ	1.5 to 3 months open period
RFQ Evaluation	1 month
RFP	7 to 11 months open period
RFP Evaluation	1-2 months
Time between Nomination of Preferred Proponent and Financial Close	2 to 4 months

PRESERVE

Project Team Chart

Value for Money

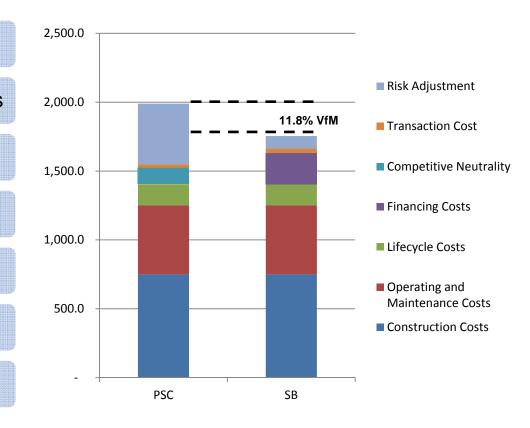

Value for Money (VFM)

Value for money compares the cost of traditional procurement vs. the cost of P3 procurement taking into consideration:

- Whole-of-life costs: total cost of ownership over the life of the asset
- Risk: total cost of risk retained by the public sector
- Discounting: present value of costs over the life of the asset

Value for Money

Operations and Maintenance Costs


Lifecycle Costs

Financing Costs

Competitive Neutrality

Transaction Costs

Risk Adjustment

Risk Adjustment

Most jurisdictions have developed standard risk matrices for public infrastructure projects (50-100 common risks)

Risk workshops are typically used to identify which risks apply to a given project

Risk workshops or research on historic projects are used to estimate the likelihood that risks will occur and their impacts under different procurement options

Transferred and Retained Risks are modeled through a Monte Carlo simulation

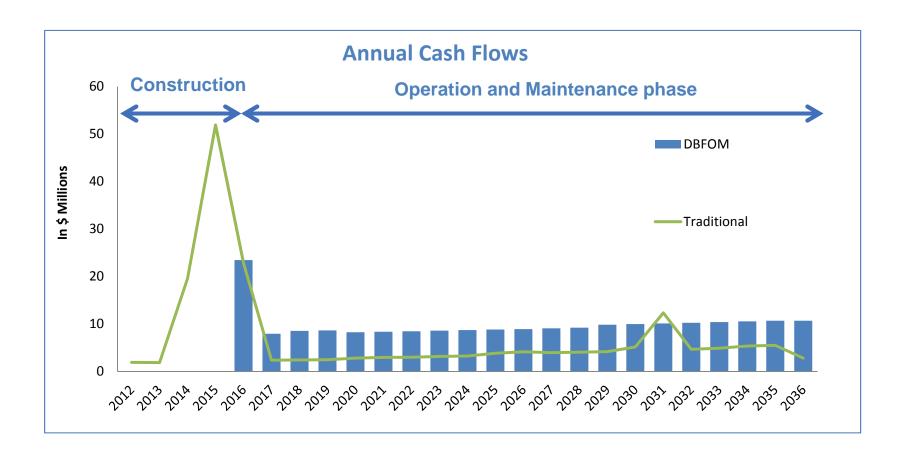
Typically the total amount of estimated risk is lower under a P3, reflecting a better allocation of risk between public and private sector

Risk Transfer Comparison

Project Risks	Trad	Traditional		P3	
	Public Sector	Private Sector	Public Sector	Private Sector	
Approvals and Permits					
Land use approvals	✓		~		
Environmental permits	✓			✓	
Development and Design					
Design Error	✓			✓	
Design Omissions	✓			✓	
Unforeseen site conditions	✓		✓	√	
Construction					
Cost Overruns	✓			✓	
Schedule Overruns	✓	✓		✓	
Material inflation	√	✓		✓	
Labour disputes	✓			✓	
Operations, Maintenance and Lifecycle					
Increased maintenance costs	✓			✓	
Changes in legislation	✓		✓		
Asset residual value	✓			✓	

VFM Methodologies

Jurisdictions analyze the same project elements and essentially yield the same conclusion, although there are differences in methodologies:


Different discount rates (risk-free vs. risk-adjusted)

Quantify risks differently

Different treatments of innovation and efficiencies

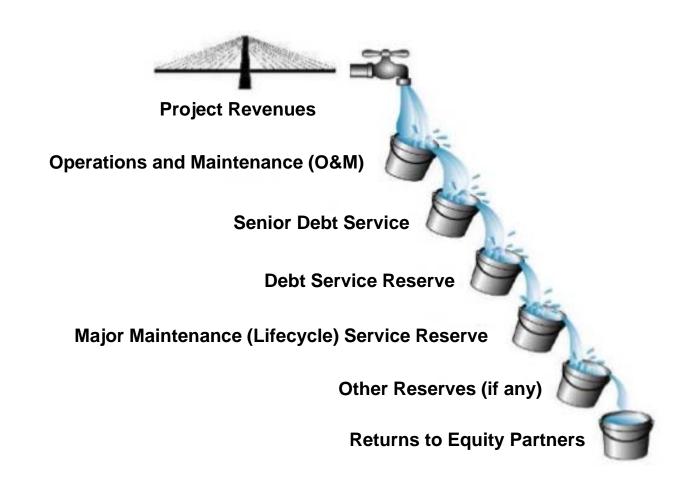
Payment Mechanism

Traditional vs. P3 Funding Profile

31

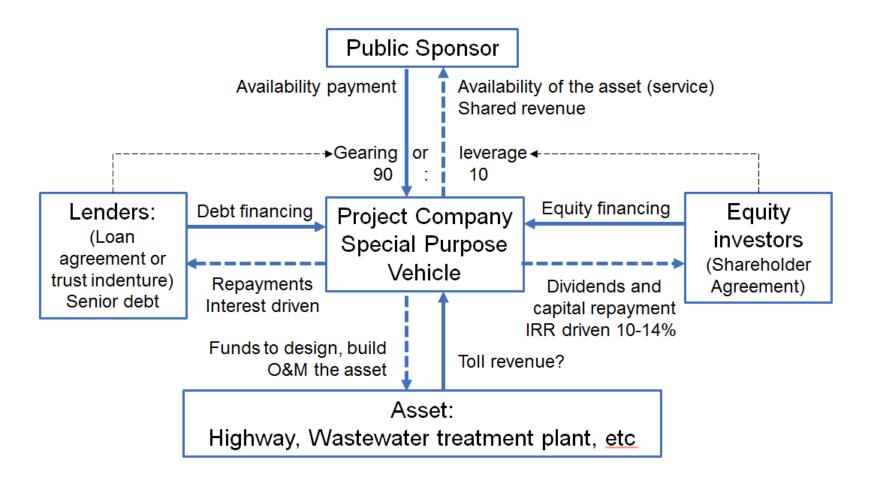
Payment Mechanism during Construction

- Substantial Completion Payment strong form of Performance-Based Payment
 - Single payment at substantial completion
 - Testing/certification by Independent Certifier
 - 100% of private capital is at risk during construction
 - Strong incentive for Project Co. to deliver high quality asset on time.


PPP (

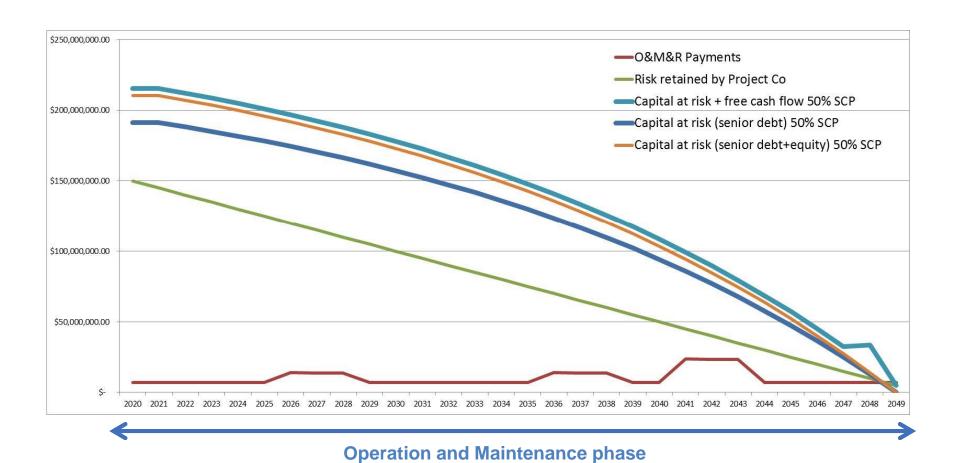
Payment Mechanism during Construction

- Milestone Payments –
 Alternative Performance-Based Payment form
 - Asset bundle paid upon completion of each asset (e.g.: BC Housing – 13 SRO hotels)
 - Clearly defined construction milestones available for use prior to substantial completion of entire asset (e.g.: Regina Bypass – section of highway available)



Cash Flow Profile During Operations

Financing Structure


Capital at Risk

Capital at Risk

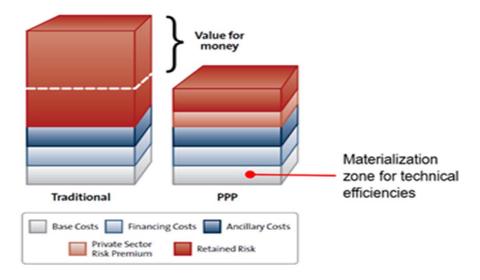
- Role of private capital at risk in P3 project delivery
 - Compels performance through strong financial securities;
 - Enables streamlined remedies in the Project Agreement;
 - Brings additional scrutiny and expertise through third party due diligence; and
 - Facilitates true integration of the project team.
- Considerations of setting the range
 - Project size, scope and nature
 - Financiers' acceptance
 - O&M risk transfer

Anchoring Capital to Risk

Overview of Efficiencies Study

- PPP Canada engaged Morrison Hershfield Ltd to undertake the study to deepen understanding of technical efficiencies as they occur in P3 projects
- Industry feedback solicited through non-attributable market soundings and consultations
- The findings will aid Project Sponsors in quantifying project related technical efficiencies

Jurisdictional Review

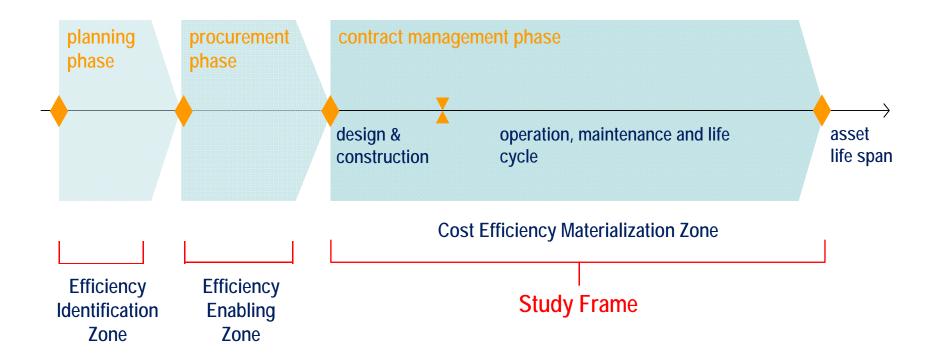

Not all jurisdictions use the same methodology

Jurisdiction / Actor	Efficiency factor application	Factor used (% deal value) Range: 5% to 15% applied as blended rate for all efficiencies including risk					
AB / Alberta Infrastructure	Estimated at project cost roll-up level. Determined in-house using standardized factor						
ON / Infrastructure Ontario	Estimated at project cost roll-up level. Determined in-house using standardized factor	Standard factor: 12% applied to base costs net of risk					
BC / Partnerships BC	Estimated at project elemental level of project by third party	Range: D/B @ 7% to 9%; and OMR @ 1% to 3%					
SK / City of Regina	Estimated at cost breakdown level: CapEx; energy and consumables; life cycle costs. Determined in- house using standardized factors	Standard factors: CapEx @ 15%; Energy/consumables @ 10%; Major lifecycle @ 10%					

What are Efficiencies?

 can be defined as: opportunities to incrementally improve the effectiveness and economic performance of a P3 project, and measured on how well and productively the Special Purpose Vehicle (SPV) in a P3 project uses available resources to achieve pre-established objectives and goals.

Diagram 2.1 - Efficiency materialization zone



How are Efficiencies Generated?

- Enablers: essentially create a situation in which efficiencies may be created
 - Technical Requirement Flexibility
 - Availability of Technical Variants
 - SPV Expertise
- <u>Drivers</u>: ways in which efficiencies can occur given the presence of an enabler
 - Integration of delivery team practices
 - Application of whole-of-life considerations
 - Enhanced project management practices

PROPER

Efficiencies Study

Challenges and Limitations

- Hurdles for the Public Sector:
 - Legislative Enablement
 - Asset class immaturity
 - Burden of early due diligence
 - Transfer of input control
- Hurdles for the Private Sector:
 - Requirements inflexibility
 - Background information fidelity
 - Duration of due diligence
 - Local market capacity
 - Long-term warranty

Summary of results:

- Efficiencies were reported as materializing in the execution of P3 project models
- Technical efficiencies are often blended within larger catchment of efficiencies, no consistent practice or conventions were observed related to the estimation or quantification of technical efficiencies
- Public sector can play a role as efficiency enablers

Overview of Efficiencies Matrix

Efficiencies Matrix

- Following consultations, an efficiencies matrix was created to align practice of estimating efficiencies
- The matrix attempts to capture the main drivers of efficiencies
- Similar to a risk matrix the efficiencies matrix provides an analytical framework to determine efficiencies on a project-by-project basis

Efficiency (%) = (Probability of materialization) x (Impact on net present value)

Efficiencies Workshop

- Conducted like a risk workshop
 - Usually done on the same day as a risk workshop as the same people are required
- Objective of the workshop is to discuss potential efficiencies and fill in the matrix
- Discussion helps to further understand the project and how best to enable efficiencies for the private sector

Efficiencies Matrix

Project	Incremental Cost Efficiency Category		Canadian P3 Model (DBFM or DBFOM)															
Stage	(P3 versus Traditional)		Pr	obabilit	y of Mate	rializati	on					Impact	on Cost	,				
	PLEASE HIGHLIGHT EACH CATEGORY BELOW TO VIEW A MORE DETAILED DESCRIPTION/DEFINITION	Zero 0%	Very Low 1% to 20%	Low 21% to 40%	Moderate 41% to 60%	High 61% to 80%	Almost Certain 81% to 99%	Certain 100%	0%	1% to 3%	4% to 6%	7% to 9%	10% to 12%	13% to 15%	User-defined			
Construction	Designed with Constructability Input	0	0	0	0	0	•	0	0	0	•	0	0	0	0	0%		
	Commissioning	0	0	0	•	0	0	0	0	•	0	0	0	0	0	0%		
	Economies of scale/standardization	0	0	0	0	•	0	0	0	•	0	0	0	0	0	0%		
	Whole life/long-term warranty	0	0	0	•	0	0	0	0	0	•	0	0	0	0	0%		
	Scheduling	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0%		
	Quality Management	0	0	0	0	•	0	0	0	•	0	0	0	0	0	0%		
	Flexibility of technical requirements	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0%		
	Supply chain management	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0%		
	Impact of change orders	0	0	•	0	0	0	0	0	•	0	0	0	0	0	0%		
	CM tools/applications	0	0	•	0	0	0	0	0	•	0	0	0	0	0	0%		
	Insert other (optional)	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0%		

CONTACT US

100 Queen Street, Suite 630 Ottawa, Ontario K1P 1J9 Canada

Telephone: (613) 947-9480

Fax: (613) 947-2289

Toll Free: (877) 947-9480

Email: info@p3canada.ca